Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future

Author:

Malehmir Alireza1,Durrheim Raymond2,Bellefleur Gilles3,Urosevic Milovan4,Juhlin Christopher1,White Donald John3,Milkereit Bernd5,Campbell Geoff6

Affiliation:

1. Uppsala University, Department of Earth Sciences, Uppsala, Sweden..

2. Council for Scientific and Industrial Research (CSIR) and University of the Witwatersrand, Johannesburg, South Africa..

3. Geological Survey of Canada, Ottawa, Canada..

4. Curtin University, Department of Exploration Geophysics and Deep Exploration Technologies Corporative Research Centre (DETCRC), Perth, Australia..

5. University of Toronto, Toronto, Canada. E-mail: bm@physics.utoronto.ca.

6. GAP Geophysics, Johannesburg, South Africa..

Abstract

Due to high metal prices and increased difficulties in finding shallower deposits, the exploration for and exploitation of mineral resources is expected to move to greater depths. Consequently, seismic methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. These methods also can be used with varying degrees of success to directly target mineral deposits at depth. We review important contributions that have been made in developing these techniques for the mining industry with focus on four main regions: Australia, Europe, Canada, and South Africa. A wide range of case studies are covered, including some that are published in the special issue accompanying this article, from surface to borehole seismic methods, as well as petrophysical data and seismic modeling of mineral deposits. At present, high-resolution 2D surveys mostly are performed in mining areas, but there is a general increasing trend in the use of 3D seismic methods, especially in mature mining camps.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3