Viscoelasticity of Ells River bitumen sand and 4D monitoring of thermal enhanced oil recovery processes

Author:

Spencer James W.1

Affiliation:

1. Chevron Energy Technology Company, San Ramon, California, USA..

Abstract

Samples of Ells River bitumen sand from Alberta, Canada were measured at low frequencies (0.2–205 Hz) to determine the temperature and frequency dependence of velocities and attenuations. The samples were first measured “as received” where the pore space is mostly filled with bitumen but also contains small amounts of air and water. With residual air in the pores, at 5°C, there is strong dispersion in the P-wave modulus and a peak in attenuation at seismic frequencies. The frequency-dependent moduli and attenuations shift by three orders of magnitude in frequency as temperature is increased from 5°C to 48°C, consistent with the bitumen viscosity. Samples were then saturated so any empty pore space is filled with water. After saturation, at 1 Hz, increasing temperature from 5°C to 49°C causes a 30% reduction in the saturated P-wave modulus, a 34% reduction in the saturated bulk modulus, and a 6% reduction in the shear modulus. This behavior can only be explained by the temperature-dependent bulk modulus of bitumen. The results enable predictions regarding the P-velocities that can be expected during seismic monitoring of thermal enhanced oil recovery processes. Velocities for cold bitumen sand are near [Formula: see text] at reservoir pressure and temperature. Following steam injection, velocities should be very low (near [Formula: see text]) in heated zones more than 50°C with a free gas phase, which could be steam or gas. There will be a progressive reduction in velocities, i.e., [Formula: see text] at 25°C and [Formula: see text] at 49°C, in areas of formation heating, but without steam or gas in the pores. Albeit smaller than the effect of steam, the effect of formation heating alone is large enough to be easily detected by today’s 4D surveys. With local rock physics calibration, it should be possible to map the areal extent of formation heating using 4D seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3