Adjoint-state reverse time migration of 4C data: Finite-frequency map migration for marine seismic imaging

Author:

Fleury Clement1,Vasconcelos Ivan2

Affiliation:

1. Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado, USA..

2. Schlumberger Gould Research, Cambridge, U. K..

Abstract

Recent advances in marine seismic acquisition allow for the recording of vector-acoustic ([VA] pressure and particle velocity) seismic data from dual-source configurations, i.e., using monopole as well as dipole sources. VA reverse time migration (RTM) can be custom designed to accurately handle amplitude and directivity information from 4C seismic data. We present a method for multicomponent RTM that is based on an adjoint-state formulation using the full VA wave equations for pressure and corresponding displacement fields. This method takes advantage of the directional finite-frequency information contained in the 4C acoustic fields by using source and receiver weighting operators in the adjoint-state imaging scheme. With this adjoint-state method, the source and receiver radiation properties are tailored by choosing specific weighting operators. Weighting operators were chosen so that source- and receiver-side ghost arrivals are jointly migrated with primary energy. Because the dipole field components (e.g., components of particle displacement or acceleration) are proportional to the spatial gradient components of the pressure field, our method is in fact a formulation for reverse-time map migration that images pressure fields while jointly using the directional information contained in its full 3C gradients. As a result, our reverse time 4C map migration method yields less aperture- and sampling-related artifacts when compared to imaging of the pressure-only or 2C seismic data. In addition, our method sets a framework for full-waveform inversion using dual-source 4C seismic data. We demonstrated our findings with synthetic data, including a subsalt imaging example.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3