Microseismic monitoring of a hydraulic-fracturing operation in a CBM reservoir: Case study in the Cerrejón Formation, Cesar-Ranchería Basin, Colombia

Author:

Rodríguez-Pradilla Germán1

Affiliation:

1. GMAS Laboratory.

Abstract

Passive-seismic monitoring techniques were implemented for source characterization of microseismic events generated during a hydraulic-fracturing operation in a coalbed-methane (CBM) reservoir in Colombia. Hydraulic fracturing is a common stimulation technique performed to increase the permeability and productivity of conventional and unconventional reservoirs. Its use has increased in the last decade in several countries, including Colombia, and it is expected to keep rising in the following years. The success of a hydraulic-fracturing operation can be assessed in different ways, of which microseismic monitoring is the most common technique. This method can be implemented using surface or downhole seismometers and allows the characterization of microseismic events associated with the fractures generated. A workflow for passive-seismic data analysis was developed to characterize microseismic events (i.e., hypocenter location and source-mechanism analysis) from data acquired with surface stations and to obtain important parameters for a hydraulic-fracturing design such as the stimulated reservoir volume (SRV), orientation, and anisotropy of horizontal stresses and a discrete fracture network (DFN). This workflow was implemented in a case study in Colombia in which a coalbed-methane reservoir in Cesar-Ranchería Basin was stimulated by hydraulic fracturing. Surface seismometers were deployed around the wellhead to monitor the microseismicity generated and to estimate all the design parameters of the stimulation.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3