Fourier reconstruction of marine-streamer data in four spatial coordinates

Author:

Zwartjes P.12,Gisolf A.12

Affiliation:

1. Formerly Delft University of Technology, Department of Applied Physics, Delft, The Netherlands; presently Shell International Exploration and Production, Kessler Park 1, 2288 GS, Rijswijk, The Netherlands.

2. Delft University of Technology, Department of Applied Physics, P. O. Box 5046, Lorentzweg 1, 2600 GA, Delft, The Netherlands. .

Abstract

Many methods exist for interpolation of seismic data in one and two spatial dimensions, but few can interpolate properly in three or four spatial dimensions. Marine multi-streamer data typically are sampled relatively well in the midpoint and absolute offset coordinates but not in the azimuth because the crossline shot coordinate is significantly under sampled. We approach the problem of interpolation of marine-streamer data in four spatial dimensions by splitting the problem into a 1D interpolation along the densely sampled streamers and a 3D Fourier reconstruction for the remaining spatial coordinates. In Fourier reconstruction, the Fourier coefficients that synthesize the nonuniformly sampled seismic data are estimated in a least-squares inversion. The method is computationally efficient, requires no subsurface information, and can handle uniform grids with missing data as well as nonuniform grids or random sampling. The output grid of the 1D interpolation in the first step is arbitrary. When the output grid has uniform inline midpoints spacing, the 3D Fourier reconstruction in the second step is performed in the crossline midpoint, absolute offset, and azimuth coordinates. When the first step outputs to uniform absolute offset, the 3D Fourier reconstruction handles the crossline/inline midpoint and the azimuth coordinates. In both cases, the main innovation is the inclusion of the azimuthal coordinate in the Fourier reconstruction. The azimuth multiplicity must be increased for the method to be successful, which means that overlap shooting is required. We have tested the algorithm on synthetic streamer data for which the proposed method outperforms an approach where the azimuthal coordinate is ignored. Potential applications are interpolation of marine streamer data to decrease the crossline source sampling for the benefit of 3D multiple prediction and regularization to reduce sampling-related differences in processing of time-lapse data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3