On the detectability of density change in steam-assisted gravity drainage reservoirs using muon tomography

Author:

Pieczonka Sara1,Schouten Doug2,Dabboor Oday1,Osler Duncan3,Braun Alexander13

Affiliation:

1. Queen's University, Department of Geological Sciences and Geological Engineering, Kingston, Ontario, Canada..

2. Ideon Technologies Inc., Richmond, British Columbia, Canada..

3. Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, Ontario, Canada..

Abstract

Muon tomography is applied to realistic density models of a steam-assisted gravity drainage (SAGD) reservoir at 1.25 and 5 years after initial reservoir production. Forward models of muon count and opacity based on the density models are computed, as well as inverse models of the synthetic muon observations for various simulated detector arrays. The results demonstrate that both phases of reservoir development, namely the rising phase and the spreading phase, can be resolved by muon detectors placed 30 m below the bitumen reservoir at 230 m total vertical depth. The total mass change in the reservoir was recovered from the inversion model and differs from the true mass change by 20%–29%. The spatial distribution of density change shows very good agreement in the horizontal direction, while the vertical is less well constrained in this modeled sensor array configuration. The inverse models provide improved insights into reservoir depletion patterns and indicate muon tomography to be an applicable tool for continuous reservoir monitoring. The numerical modeling approach developed herein is able to model a wide range of SAGD reservoir geometries and detector arrays toward planning of optimized monitoring solutions.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3