Pluto gas field: Successful placement of an infill well based on 4D seismic monitoring

Author:

Peterson Benjamin1,Gerhardt André1

Affiliation:

1. Woodside Energy Ltd., Perth, Western Australia..

Abstract

Seismic 4D monitoring technology has not been as widely employed for gas fields as it has for oil. Many gas fields rely on depletion drive, which has a 4D seismic response that can be uncertain and difficult to predict. On the other hand, aquifer-supported gas fields with measurable water ingress have a reasonable chance of success in terms of generating an interpretable 4D amplitude signal. Pluto gas field in the North West Shelf of Australia falls into this category. Following discovery in 2005, Pluto was appraised by five wells, which found a consistent gas gradient and gas-water contact across the entire field and its various reservoirs. Gas production began in 2012. Time-lapse seismic feasibility studies concluded that gas-saturation changes could be observed with a monitor seismic survey acquired three to four years after first gas. The Pluto 4D Monitor 1 survey was acquired at the start of 2016 and revealed both hardening and softening anomalies. Hardening is interpreted as water ingress (expected) and softening as gas expansion (unexpected). The Pluto 4D results provided important insights into reservoir connectivity and discontinuities. Large hardening anomalies at the TR27 (lower) level can be clearly seen in the data, showing avenues for water ingress. More importantly, a large softening anomaly below the original gas-water contact in the TR29 (upper) reservoir is interpreted to be gas expansion into the aquifer created by a U-tubing effect around a possible barrier in the gas leg. This suggests that the entire TR29 reservoir may not be accessed by the producing PLA04 well. Based on this 4D interpretation, the PLA07 well was drilled and completed in 2019 to produce the TR29 gas updip from the gas expansion anomaly and to increase Pluto field recovery.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3