CO2 messes with rock physics

Author:

Prasad Manika1,Glubokovskikh Stanislav2,Daley Thomas2,Oduwole Similoluwa1,Harbert William34

Affiliation:

1. Colorado School of Mines, Center for Rock and Fluid Multiphysics, Golden, Colorado, USA..

2. Lawrence Berkeley National Laboratory, Energy Geosciences Division, Berkeley, California, USA..

3. United States Department of Energy, National Energy Technology Laboratory, ORISE, Pittsburgh, Pennsylvania, USA..

4. University of Pittsburgh, Department of Geology and Environmental Science, Pittsburgh, Pennsylvania, USA

Abstract

Seismic techniques are the main monitoring tools for CO2 storage projects, especially in saline aquifers with good porosity. The majority of existing commercial and pilot CO2 injections have resulted in clear time-lapse seismic anomalies that can be used for leakage detection as well as refinement of the reservoir models to conform with the monitoring observations. Both tasks are legal requirements imposed on site operators. This paper revisits the rock-physics effects that may play an important role in the quantitative interpretation of seismic data. First, we briefly describe a standard approach to the rock-physics modeling of CO2 injections: Gassmann-type fluid substitution accounts for the presence of compressible CO2 in the pore space, and dissolution/precipitation of the minerals changes the pore volume. For many geologic conditions and injection scenarios, this approach is inadequate. For example, dissolution of the carbonate cement may weaken the rock frame, wave-induced fluid flow between CO2 patches can vary the magnitude of the seismic response significantly for the same saturation, the fluid itself might undergo change, and the seal might act as a sink for CO2. Hence, we critically review the effects of some recent advances in understanding CO2 behavior in the subsurface and associated rock-physics effects. Such a review should help researchers and practitioners navigate through the abundance of published work and design a rock-physics modeling workflow for their particular projects.

Funder

U.S. DOE, Office of Fossil Energy

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3