kNN-based gas-bearing prediction using local waveform similarity gas-indication attribute — An application to a tight sandstone reservoir

Author:

Song Zhaohui1ORCID,Yuan Sanyi1ORCID,Li Zimeng1,Wang Shangxu1ORCID

Affiliation:

1. China University of Petroleum (Beijing), Department of Geophysics, Beijing 102200, China.(corresponding author); .

Abstract

Gas-bearing prediction of tight sandstone reservoirs is significant but challenging due to the relationship between the gas-bearing property and its seismic response being nonlinear and complex. Although machine learning (ML) methods provide potential for solving the issue, the major challenge of ML applications to gas-bearing prediction is that of generating accurate and interpretable intelligent models with limited training sets. The k nearest neighbor ( kNN) method is a supervised ML method classifying an unlabeled sample according to its k neighboring labeled samples. We have introduced a kNN-based gas-bearing prediction method. The method can automatically extract a gas-sensitive attribute called the gas-indication local waveform similarity attribute (GLWSA) combining prestack seismic gathers with interpreted gas-bearing curves. GLWSA uses the local waveform similarity among the predicting samples and the gas-bearing training samples to indicate the existence of an exploitable gas reservoir. GLWSA has simple principles and an explicit geophysical meaning. We use a numerical model and field data to test the effectiveness of our method. The result demonstrates that GLWSA is good at characterizing the reservoir morphology and location qualitatively. When the method applies to the field data, we evaluate the performance with a blind well. The prediction result is consistent with the geologic law of the work area and indicates more details compared to the root-mean-square attribute.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference19 articles.

1. Automated fault detection without seismic processing

2. Nearest neighbor pattern classification

3. Doshi-Velez, F., and B. A. Kim, 2017, A roadmap for a rigorous science of interpretability: arXiv preprint, arXiv: 1702.08608.

4. Frequency‐dependent seismic reflection from a permeable boundary in a fractured reservoir

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3