High-resolution surface NMR tomography of shallow aquifers based on multioffset measurements

Author:

Hertrich Marian123,Green Alan G.123,Braun Martina123,Yaramanci Ugur123

Affiliation:

1. ETH Zurich, Institute of Geophysics, Zurich, Switzerland. .

2. Berlin University of Technology, Department of Applied Geophysics, Berlin, Germany. .

3. Leibniz Institute for Applied Geophysics, Hannover, Germany. .

Abstract

Conventional surface nuclear magnetic resonance (NMR) surveying based on 1D inversions of data recorded using a common (coincidence) transmitter and receiver loop provides only limited or distorted water-concentration information in regions characterized by strong lateral heterogeneity. We introduce a combined field-acquisition and tomographic-inversion strategy suitable for 2D surface NMR investigations of free (i.e., unbound) water stored in hydrogeologically complex regions. Using combinations of coincident and multioffset loops, we take advantage of the range of sensitivities offered by different loop configurations to variations in subsurface free-water concentration. The new tomographic scheme can invert data acquired with diverse loop configurations. Tests of the combined acquisition and inversion strategy on complicated synthetic and observed data demonstrate the substantially higher resolution information provided by combinations of loop configurations vis-à-vis that supplied by a standard coincident loop. A combination of coincident and half-overlapping loop data sets yields tomograms rich in detail, comparable to tomograms derived from a combination of all considered loop configurations. If resources are limited, surface NMR practitioners should consider the half-overlapping loop configuration as an alternative to the standard coincident loop configuration. For a four-station data recording campaign, the half-overlapping loop configuration with 50% more measurements and equal number of loop deployments and retrievals provides significantly higher resolution tomograms than a coincident loop configuration.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3