Role of the inhomogeneity angle in anisotropic attenuation analysis

Author:

Behura Jyoti12,Tsvankin Ilya12

Affiliation:

1. Formerly Colorado School of Mines, Department of Geophysics, Center for Wave Phenomena, Golden, Colorado, U.S.A.; presently BP America, Exploration and Production Technology, Houston, Texas, U.S.A..

2. Colorado School of Mines, Department of Geophysics, Center for Wave Phenomena, Golden, Colorado, U.S.A..

Abstract

The inhomogeneity angle (the angle between the real and imaginary parts of the wave vector) is seldom taken into account in estimating attenuation coefficients from seismic data. Wave propagation through the subsurface, however, can result in relatively large inhomogeneity angles [Formula: see text], especially for models with significant attenuation contrasts across layer boundaries. Here we study the influence of the angle [Formula: see text] on phase and group attenuation in arbitrarily anisotropic media using the first-order perturbation theory verified by exact numerical modeling. Application of the spectral-ratio method to transmitted or reflected waves yields the normalized group attenuation coefficient [Formula: see text], which is responsible for amplitude decay along seismic rays. Our analytic solutions show that for a wide range of inhomogeneity angles, the coefficient [Formula: see text] is close to the normalized phase attenuation coefficient [Formula: see text] computed for [Formula: see text] [Formula: see text]. The coefficient[Formula: see text] can be inverted directly for the attenuation-anisotropy parameters, so no knowledge of the inhomogeneity angle is required for attenuation analysis of seismic data. This conclusion remains valid even for uncommonly high attenuation with the quality factor [Formula: see text] less than 10 and strong velocity and attenuation anisotropy. However, the relationship between group and phase attenuation coefficients becomes more complicated for relatively large inhomogeneity angles approaching so-called ‘‘forbidden directions.’’ We also demonstrate that the velocity function remains practically independent of attenuation for a wide range of small and moderate angles [Formula: see text]. In principle, estimation of the attenuation-anisotropy parameters from the coefficient [Formula: see text] requires computation of the phase angle, which depends on the anisotropic velocity field. For moderately anisotropic models, however, the difference between the phase and group directions should not significantly distort the results of attenuation analysis.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3