3-D inversions of magnetic gradiometer data in archeological prospecting: Possibilities and limitations

Author:

Herwanger Jörg1,Maurer Hansruedi1,Green Alan G.1,Leckebusch Jürg1

Affiliation:

1. Swiss Fed. Inst. of Tech., Institute of Geophysics, ETH-Hoenggerberg, CH-8093 Zürich, Switzerland. Emails:

Abstract

A vertical‐gradient magnetic system based on optically pumped Cesium sensors has been used to map subtle magnetic anomalies across infilled pit houses and ditches at a medieval archeological site in northern Switzerland. For estimating the locations and dimensions of these features from the recorded data, we have designed and implemented an appropriate inversion scheme. Tests of this scheme on realistic synthetic data sets suggested that suitable minimum magnetic susceptibility contrasts and smoothing parameters for the inversion may be directly extracted from the data. Inversions with minimum magnetic susceptibility contrasts generated causative bodies with maximum plausible sizes. By using higher magnetic susceptibility contrasts, a complete suite of models that matched the data equally well was produced. To constrain better the magnetic susceptibility constrast within a selected area of the archeological site, shallow samples of topsoil and sediment were analyzed in the laboratory. An inversion based on the measured magnetic susceptibility contrast yielded reliable estimates of the locations, 3-D geometries, and sizes of two small pit houses. The depth extent of one pit house was subsequently verified by shallow drilling. We concluded that inversions of vertical‐gradient magnetic data constrained by magnetic susceptibility or shallow borehole information are rapid and inexpensive means of providing key knowledge on the depth distribution of inductively magnetized bodies.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3