Image-space surface-related multiple prediction

Author:

Artman Brad12,Alvarez Gabriel12,Matson Ken12

Affiliation:

1. Stanford University, Stanford Exploration Project, Department of Geophysics, Stanford, California. .

2. BP, Houston, Texas. .

Abstract

A very important aspect of removing multiples from seismic data is accurate prediction of their kinematics. We cast the multiple prediction problem as an operation in the image space parallel to the conventional surface-related multiple-prediction methodology. Though developed in the image domain, the technique shares the data-driven strengths of data-domain surface-related multiple elimination (SRME) by being independent of the earth (velocity) model. Also, the data are used to predict the multiples exactly so that a Radon transform need not be designed to separate the two types of events. The cost of the prediction is approximately the same as that of data-space methods, though it can be computed during the course of migration. The additional cost is not significant compared to that incurred by shot-profile migration, though split-spread gathers must be used. Image-space multiple predictions are generated by autoconvolving the traces in each shot-gather at every depth level during the course of a shot-profile migration. The prediction in the image domain is equivalent to that produced by migrating the data-space convolutional prediction. Adaptive subtraction of the prediction from the image is required. Subtraction in the image domain, however, provides the advantages of focused energy in a smaller domain since extrapolation removes some of the imperfections of the input data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3