Directional illumination analysis using the local exponential frame

Author:

Mao Jian123,Wu Ru-Shan123,Gao Jing-Huai123

Affiliation:

1. University of California at Santa Cruz, Department of Earth and Planetary Sciences, Modeling and Imaging Laboratory, Santa Cruz, California, U.S.A., and Xi’an Jiaotong University, Department of Electronic and Information Engineering, Institute of Wave and Information, Xi’an, China. .

2. Xi’an Jiaotong University, Department of Electronic and Information Engineering, Institute of Wave and Information, Xi’an, China. .

3. University of California at Santa Cruz, Department of Earth and Planetary Sciences, Modeling and Imaging Laboratrory, Santa Cruz, California, U.S.A. .

Abstract

We have developed an efficient method of directional illumination analysis in the local angle domain using local exponential frame beamlets. The space-domain wavefields with different shot-receiver geometries are decomposed into the local angle domain by using the local exponential beamlets, which form a tight frame with the redundancy ratio two and are implemented by a linear combination of local cosine and local sine transforms. Because of the fast algorithms of the local cosine/sine transforms, this method is much more efficient than the previously used decomposition methods in directional illumination analysis, such as the local slant-stacking method and the Gabor-Daubechies frame method. The results of directional illumination (DI) maps and the acqui-sition dip responses (ADR) for the 2D SEG/EAGE salt model and the 45-shot 3D SEG/EAGE model demonstrated the validity and feasibility of our method. Compared with the illumination results using local slant-stacking decomposition, the new method produces illumination maps of similar quality, but it does so a few times faster. Furthermore, because of its high computational efficiency and saving in memory usage, the new method makes the 3D directional illumination analysis readily applicable in the industry.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3