Imaging of reflection seismic energy for mapping shallow fracture zones in crystalline rocks

Author:

Kim J. S.1,Moon Wooil M.1,Lodha Ganpat2,Serzu Mulu2,Soonawala Nash2

Affiliation:

1. University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

2. AECL Research, Pinawa, Manitoba, Canada R0E 1L0

Abstract

The high‐resolution reflection seismic technique is being used increasingly to address geologic exploration and engineering problems. There are, however, a number of problems in applying reflection seismic techniques in a crystalline rock environment. The reflection seismic data collected over a fractured crystalline rock environment are often characterized by low signal‐to‐noise ratios (S/N) and inconsistent reflection events. Thus it is important to develop data processing strategies and correlation schemes for the imaging of fracture zones in crystalline rocks. Two sets of very low S/N, high‐resolution seismic data, previously collected by two different contractors in Pinawa, Canada, and the island of Äspö, Sweden, were reprocessed and analyzed, with special emphasis on the shallow reflection events occurring at depths as shallow as 60–100 m. The processing strategy included enhancing the signals hidden behind large‐amplitude noise, including clipped ground roll. The pre‐ and poststack processing includes shot f-k filtering, residual statics, careful muting after NMO correction, energy balance, and coherency filtering. The final processed seismic sections indicate that reflected energy in these data sets is closely related to rock quality in Äspö data and fracturing in Atomic Energy of Canada, Ltd. (AECL) data. The lithologic boundaries are not clearly mappable in these data. When thickness of the reflection zone is of the order of a wavelength, the top and bottom of the zone may be resolved. The major fracture zones in crystalline rocks correlate closely with the well‐log data and are usually characterized by very low velocity and produce low‐acoustic‐impedance contrasts compared to those of surrounding rocks. Because the incidence angles vary rapidly for shallow‐reflection geometries, segments of major fracture zones can effectively be analyzed in terms of reflectivity. Reflection images of each fracture zone were investigated in the common‐offset section, where each focused event was associated with a consistent incidence angle on the reflectivity map. The complex attributes of the data indicate that strong reflectors at shallow depth coincide with intensely fractured zones. These correlate well with instantaneous amplitude plots and instantaneous frequency plots. The instantaneous phase plot also identifies the major and minor fractures.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3