Analysis of depth resolution in potential-field inversion

Author:

Fedi Maurizio12,Hansen Per Christian12,Paoletti Valeria12

Affiliation:

1. Universitá di Napoli Federico II, Dipartimento di Scienze della Terra, Largo San Marcellino 10, I-80138 Napoli, Italy.

2. Technical University of Denmark, Informatics and Mathematical Modelling, Building 321, DK-2800 Lyngby, Denmark.

Abstract

We study the inversion of potential fields and evaluate the degree of depth resolution achievable for a given problem. To this end, we introduce a powerful new tool: the depth-resolution plot (DRP). The DRP allows a theoretical study of how much the depth resolution in a potential-field inversion is influenced by the way the problem is discretized and regularized. The DRP also allows a careful study of the influence of various kinds of ambiguities, such as those from data errors or of a purely algebraic nature. The achievable depth resolution is related to the given discretization, regularization, and data noise level. We compute DRP by means of singular-value decomposition (SVD) or its generalization (GSVD), depending on the particular regularization method chosen. To illustrate the use of the DRP, we assume a source volume of specified depth and horizontal extent in which the solution is piecewise constant within a 3D grid of blocks. We consider various linear regularization terms in a Tikhonov (damped least-squares) formulation, some based on using higher-order derivatives in the objective function. DRPs are illustrated for both synthetic and real data. Our analysis shows that if the algebraic ambiguity is not too large and a suitable smoothing norm is used, some depth resolution can be obtained without resorting to any subjective choice of depth weighting.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3