Measuring AEM waveforms with a ground loop

Author:

Davis Aaron1,Macnae James1

Affiliation:

1. RMIT University, Applied Physics, Melbourne, Australia. .

Abstract

Measuring a transmitter-current waveform provides critical data unavailable for some airborne electromagnetic (AEM) systems yet needed to model AEM data quantitatively. We developed a novel experimental method of measuring an airborne transmitter waveform by monitoring the current induced in a closed, multiturn, insulated ground loop of known inductance [Formula: see text] and resistance [Formula: see text]. The transmitter waveform of five different time-domain systems is deconvolved from the measured ground-loop response when excited by the primary electromagnetic field of the AEM system. In general, our measurements agree well with contractor-described transmitter current waveforms, although crucial differences exist between our deconvolved waveforms and those described in the literature. Using the pulse-per-second feature of a GPS antenna, the ground loop can monitor the frequency drift of a frequency-domain system. The ground loop behaves like a lossy electric-field antenna when the resistance closing the ground loop is too large. This leads to negatives in the response of coincident-loop systems without including induced polarization effects. After observing exponentially decaying, oscillating-current responses in high-resistance ground loops, we model the observed current with an LRC circuit whose resistance and capacitance represent generalized effective antenna and free-space values. Our model predicts responses that closely match the damped oscillations seen in the airborne response during flyover; however, it does not work well on conductive ground.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference14 articles.

1. Boyd, G. W. , 2004, HoistEM — A new airborne electromagnetic system: Presented at PACRIM 2004, Proceedings, 211–218.

2. Davis, A. C. , 2007, Quantitative characterisation of airborne electromagnetic systems: Ph.D. dissertation, RMIT University.

3. Quantifying AEM system characteristics using a ground loop

4. Jackson, J. D. , 1999, Classical electrodynamics, 3rd ed., John Wiley & Sons, Inc.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3