Complex permittivity and clay mineralogy of grain-size fractions in a wet silt soil

Author:

Arcone Steven12,Grant Steven12,Boitnott Ginger12,Bostick Benjamin12

Affiliation:

1. U.S. Army ERDC-Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, U.S.A. .

2. Dartmouth College, Hanover, New Hampshire, U.S.A. .

Abstract

We determined the complex permittivity and clay mineralogy of grain-size fractions in a wet silt soil. We used one clay-size fraction and three silt-size fractions, measured permittivity with low error from [Formula: see text] with time-domain spectroscopy, and estimated mineral weight percentages using X-ray diffraction (XRD). The volumetric water contents were near 30%, and the temperature was [Formula: see text]. For the whole soil, standard fractionation procedures yielded 2.4% clay-size particles by weight, but XRD showed that the phyllosilicate clay minerals kaolinite, illite, and smectite made up 17% and were significantly present in all fractions. Above approximately [Formula: see text], all real parts were similar. Below approximately [Formula: see text], the real and imaginary permittivities increased with decreasing grain size as frequency decreased, and the imaginary parts became dominated by direct-current conduction. Similarly, below approximately [Formula: see text], the measured permittivity of montmorillonite, a common smectite, dominated that of the other clay minerals. Total clay mineral and smectite mass fractions consistently increased with decreasing grain size. Below [Formula: see text], a model with progressively increasing amounts of water and parameters characteristic of montmorillonite matches the data well for all fractions, predicts permittivities characteristic of free water in smectite structural galleries, and shows that the similar real parts above [Formula: see text] are caused by a small suppression of the high-frequency static value of water permittivity by the smectite. We conclude that the clay mineral content, particularly smectite, appears to be responsible for permittivity variations between grain-size fractions. Small model mismatches in real permittivity near the low-frequency end and the greater fractions of kaolinite and illite suggest that the total clay mineral content might have been important for the coarser fractions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference41 articles.

1. Arcone, S. A. , and A. J. Delaney, 2003, Radiowave pulse refraction and ground wave propagation through permafrost and the active layer: Proceedings of the Eighth International Conference on Permafrost, International Permafrost Association, 21–26.

2. GPR Pulse Attenuation in a Fine-Grained and Partially Contaminated Formation

3. Hierarchy of dielectric relaxation times in water

4. Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols

5. An overview of time domain spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3