Acquisition and near-surface impacts on VSP mini-batch FWI and RTM imaging in desert environment

Author:

Kazei Vladimir1,Liang Hong1,AlDawood Ali2

Affiliation:

1. Aramco Americas, Houston, Texas, USA..

2. Saudi Aramco, Dhahran, Saudi Arabia..

Abstract

The SEG Advanced Modeling (SEAM) Arid benchmark model was designed to simulate an extremely heterogeneous low-velocity near surface (NS), which is typical of desert environments and typically not well characterized or imaged. Imaging of land seismic data is highly sensitive to errors in the NS velocity model. Vertical seismic profiling (VSP) partly alleviates the impact of the NS as the receivers are located at depth in the borehole. Deep learning (DL) offers a flexible optimization framework for full-waveform inversion (FWI), often outperforming typically used optimization methods. We investigate the quality of images that can be obtained from SEAM Arid VSP data by acoustic mini-batch reverse time migration (RTM) and full-waveform imaging. First, we focus on the effects of seismic vibrator and receiver array positioning and imperfect knowledge of the NS model when inverting 2D acoustic data. FWI imaging expectedly and consistently outperforms RTM in our tests. We find that the acquisition density is critical for RTM imaging and less so for FWI, while NS model accuracy is critical for FWI and has less effect on RTM imaging. Distributed acoustic sensing along the full length of the well provides noticeable improvement over a limited aperture array of geophones in imaging deep targets in both RTM and FWI imaging scenarios. Finally, we compare DL-based FWI imaging with inverse scattering RTM using the upgoing wavefield from the original SEAM data. Use of significantly more realistic 3D elastic physics for the simulated data generation and simple 2D acoustic inversion engine makes our inverse problem more realistic. We observe that FWI imaging in this case produces an image with fewer artifacts.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3