Velocity field imaging with an anomaly recovery algorithm, incorporating later arrivals

Author:

Greenhalgh Stewart A.1,Gruber Thomas2,Zhou Bing1

Affiliation:

1. The University of Adelaide, Department of Geology and Geophysics, Adelaide, South Australia 5005, Australia. Emails:

2. ERSIS Australia Pty. Ltd., Melbourne, Victoria, Australia.

Abstract

We have developed a novel velocity‐field recovery algorithm incorporating later arrivals which is aimed at overcoming several drawbacks encountered with standard tomographic inversion schemes. The anomaly recovery algorithm (ARA) places a series of anomalies, each fully described by only a few parameters, into a given velocity‐field estimate, varying the parameters to minimize the residual errors in first‐arrival times and in reflection, refraction, and diffraction times, which are obtained by manual or automatic picks from seismograms. We successfully recover anomalies in synthetic variable velocity fields where standard conjugate gradient‐based tomographic inversion schemes fail, find the ARA to be very robust against errors in traveltimes of up to 8%, and obtain results that are economically more meaningful. A comparison of results of the ARA applied to a mineral field crosshole data set with that of a standard conjugate gradient least‐squares (CGLS) inversion scheme indicates the ARA is a viable option for real‐world applications. It recovers the major velocity features found in subsequent drilling. An examination of the solution space exhibits a generally smooth topography with few significant minima interspersed by a larger number of minor local minima, suggesting the applicability of several standard nonlinear inversion schemes. The central idea underlying the ARA, to represent the velocity‐field inversion problem as low dimensional rather than high dimensional, makes the method generic, highly flexible, and relatively easy to analyze in terms of stability and local minima.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3