High-resolution passive seismic tomography for 3D velocity, Poisson’s ratioν, and P-wave qualityQPin the Delvina hydrocarbon field, southern Albania

Author:

Tselentis G-Akis123,Martakis Nikolaos123,Paraskevopoulos Paraskevas123,Lois Athanasios123

Affiliation:

1. University of Patras, Seismological Laboratory, Patras, Greece..

2. LandTech Enterprises, Athens, Greece..

3. Formerly University of Patras, Seismological Laboratory, Patras, Greece; presently LandTech Enterprises, Athens, Greece..

Abstract

We have studied using traveltimes of P- and S-waves and initial seismic-pulse rise-time measurements from natural microearthquakes to derive 3D P-wave velocity VPinformation (mostly structural) as well as P- and S-wave velocity VP/VSand P-wave quality factor QPinformation (mostly lithologic) in a known hydrocarbon field in southern Albania. During a 12-month monitoring period, 1860 microearthquakes were located at a 50-station seismic network and were used to obtain the above parameters. The data set included earthquakes with magnitudes ranging from –0.1 to 3.0 R (Richter scale) and focal depths typically occurring between 2 and 10 km. Kohonen neural networks were implemented to facilitate the lithological classification of the passive seismic tomography (PST) results. The obtained results, which agreed with data from nearby wells, helped delineate the structure of the reservoir. Two subregions of the investigated area, one corresponding to an oil field and one to a gas field, were correlated with the PST results. This experiment showed that PST is a powerful new geophysical technique for exploring regions that present seismic penetration problems, difficult topographies, and complicated geologies, such as thrust-belt regions. The method is economical and environmentally friendly, and it can be used to investigate very large regions for the optimal design of planned 2D or 3D conventional geophysical surveys.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3