Seismic attenuation: Effects of pore fluids and frictional‐sliding

Author:

Winkler Kenneth W.1,Nur Amos2

Affiliation:

1. Schlumberger‐Doll Research, P.O. Box 307, Ridgefield, CT 06877

2. Department of Geophysics, Stanford University, Stanford, CA 94035

Abstract

Seismic wave attenuation in rocks was studied experimentally, with particular attention focused on frictional sliding and fluid flow mechanisms. Sandstone bars were resonated at frequencies from 500 to 9000 Hz, and the effects of confining pressure, pore pressure, degree of saturation, strain amplitude, and frequency were studied. Observed changes in attenuation and velocity with strain amplitude are interpreted as evidence for frictional sliding at grain contacts. Since this amplitude dependence disappears at strains and confining pressures typical of seismic wave propagation in the earth, we infer that frictional sliding is not a significant source of seismic attenuation in situ. Partial water saturation significantly increases the attenuation of both compressional (P) and shear (S) waves relative to that in dry rock, resulting in greater P‐wave than S‐wave attenuation. Complete saturation maximizes S‐wave attenuation but causes a reduction in P‐wave attenuation. These effects can be interpreted in terms of wave induced pore fluid flow. The ratio of compressional to shear attenuation is found to be a more sensitive and reliable indicator of partial gas saturation than is the corresponding velocity ratio. Potential applications may exist in exploration for natural gas and geothermal steam reservoirs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 408 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3