Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial

Author:

Etgen John T.12,O’Brien Michael J.12

Affiliation:

1. BP America, Houston, Texas. .

2. Allied Geophysics, Evergreen, Colorado. .

Abstract

We present a set of methods for modeling wavefields in three dimensions with the acoustic-wave equation. The primary applications of these modeling methods are the study of acquisition design, multiple suppression, and subsalt imaging for surface-streamer and ocean-bottom recording geometries. We show how to model the acoustic wave equation in three dimensions using limited computer memory, typically using a single workstation, leading to run times on the order of a few CPU hours to a CPU day. The structure of the out-of-core method presented is also used to improve the efficiency of in-core modeling, where memory-to-cache-to-memory data flow is essentially the same as the data flow for an out-of-core method. Starting from the elastic-wave equation, we develop a vector-acoustic algorithm capable of efficiently modeling multicomponent data in an acoustic medium. We show that data from this vector-acoustic algorithm can be used to test upgoing/downgoing separation of P-waves recorded by ocean-bottom seismic acquisition.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3