Inversion of multicomponent 3D vertical seismic profile data for porosity and CO2 saturation at the Cranfield injection site, Cranfield, MS

Author:

Carter Russell W.1,Spikes Kyle T.1,Hess Thomas1

Affiliation:

1. The University of Texas at Austin, Jackson School of Geological Sciences, Austin, Texas, USA..

Abstract

Studying how injected [Formula: see text] affects the seismic response of reservoir rocks is important because it can improve subsurface characterization where [Formula: see text] injection is taking place. This study uses multicomponent data from a 3D vertical seismic profile (VSP) and well logs to model and invert probabilistically for the porosity and [Formula: see text] saturation at the Cranfield reservoir. The well logs were used to calibrate a rock-physics model. Once the accuracy of the model was verified, P-impedance and [Formula: see text]/[Formula: see text] from inverted multicomponent VSP data were used to estimate the porosity and fluid saturation. This inversion generated probabilistic estimates of porosity and fluid saturation for the area of the reservoir sampled by PP- and PS-waves. Inversion results using the measured well log data for calibration indicated that the model was able to estimate porosity with a relatively high degree of accuracy, with the root-mean-square (rms) error being less than 3% for all calibration tests. Pore-fluid composition was estimated, however, with reduced accuracy, with rms errors ranging from 6% to 22% depending on the composition of the calibration fluid. Results from integrating the multicomponent VSP data with the rock-physics model indicated that estimated reservoir porosities are quite close to measured values at an observation well. Pore-fluid composition estimates indicated that this method can differentiate between areas containing [Formula: see text] and those that do not.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3