3D Alford rotation analysis for the Diamond M Field, Midland Basin, Texas

Author:

Davogustto Cataldo Oswaldo E.1,Kwiatkowski Timothy J.1,Marfurt Kurt J.1,Roche Steven L.2,Thomas James W.3

Affiliation:

1. University of Oklahoma, School of Geology and Geophysics, Norman, Oklahoma, USA..

2. Cimarex Energy, Tulsa, Oklahoma, USA..

3. Dawson Geophysical Company, Oklahoma City, USA..

Abstract

The 2C by 2C S-wave survey generated significant excitement in the mid-1980s, but then it fell out of favor when S-wave splitting initially attributed to fractures was also found to be associated with an anisotropic stress regime. In general, 2C by 2C data require more expensive acquisition and more processing effort to obtain images comparable to 1C “compressional wave” data acquired with vertical component sources and receivers. Because S-waves are insensitive to fluids, and hence the water table, the effective S-wave weathering zone is greater than that for compressional waves, making statics more difficult. S-wave splitting due to anisotropy complicates residual statics and velocity analysis as well as the final image. S-wave frequencies and S-wave moveout are closer to those of contaminating ground roll than compressional waves. Since Alford’s introduction of S-wave rotation from survey coordinates to the principal axes in 1986, geoscientist and engineers retain their interest in fractures but are also keenly interested in the direction and magnitude of maximum horizontal stress. Simultaneous sweep and improved recording technology have reduced the acquisition cost to approximate that of 1C data. Alford’s work was applied to 2C by 2C poststack data. We extended the Alford rotation to prestack data using a modern high-fold 2C by 2C survey acquired over a fractured carbonate reservoir in the Diamond M Field, Texas. Through careful processing, the resulting images were comparable and in many places superior to that of the contemporaneously acquired 1C data. More importantly, we found a good correlation between our derived fracture azimuth map and the fracture azimuth log data from wells present in the field.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3