A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth

Author:

Boness Naomi L.12,Zoback Mark D.12

Affiliation:

1. Formerly of Stanford University. Currently Chevron Energy Technology Company, 6001 Bollinger Canyon Road, San Ramon, California 94583. .

2. Stanford University, Department of Geophysics, Mitchell Building, Stanford, California 94305. .

Abstract

We present an analysis of shear velocity anisotropy using data in and near the San Andreas Fault Observatory at Depth (SAFOD) to investigate the physical mechanisms controlling velocity anisotropy and the effects of frequency and scale. We analyze data from borehole dipole sonic logs and present the results from a shear-wave-splitting analysis performed on waveforms from microearthquakes recorded on a downhole seismic array. We show how seismic anisotropy is linked either to structures such as sedimentary bedding planes or to the state of stress, depending on the physical properties of the formation. For an arbitrarily oriented wellbore, we model the apparent fast direction that is measured with dipole sonic logs if the shear waves are polarized by arbitrarily dipping transversely isotropic (TI) structural planes (bedding/fractures). Our results indicate that the contemporary state of stress is the dominant mechanism governing shear velocity anisotropy in both highly fractured granitic rocks and well-bedded arkosic sandstones. In contrast, within the finely laminated shales, anisotropy is a result of the structural alignment of clays along the sedimentary bedding planes. By analyzing shear velocity anisotropy at sonic wavelengths over scales of meters and at seismic frequencies over scales of several kilometers, we show that the polarization of the shear waves and the amount of anisotropy recorded are strongly dependent on the frequency and scale of investigation. The shear anisotropy data provide constraints on the orientation of the maximum horizontal compressive stress [Formula: see text] and suggest that, at a distance of only [Formula: see text] from the San Andreas fault (SAF), [Formula: see text] is at an angle of approximately 70° to the strike of the fault. This observation is consistent with the hypothesis that the SAF is a weak fault slipping at low levels of shear stress.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3