Case study of hydraulic fracture monitoring using multiwell integrated analysis based on low-frequency DAS data

Author:

Ichikawa Masaru1,Uchida Shinnosuke1,Katou Masafumi1,Kurosawa Isao1,Tamura Kohei1,Kato Ayato1,Ito Yoshiharu1,de Groot Mike2,Hara Shoji3

Affiliation:

1. Japan Oil Gas and Metals National Corporation, Chiba, Japan..

2. Ovintiv Inc., Alberta, Canada..

3. Diamond Gas Management Canada Ltd., Alberta, Canada..

Abstract

Distributed acoustic sensing (DAS) is an effective technique for hydraulic fracture monitoring. It can potentially constrain fracture propagation direction and time while monitoring strain perturbation, such as stress shadowing. In this study, we acquired passive DAS and distributed temperature sensing (DTS) data throughout the entire fracturing operations of adjacent production wells with varying offset lengths from the fiber-optic cable in the Montney tight gas area. We applied data processing techniques to the DAS data to extract low-frequency components (less than 0.5 Hz) and to construct the strain rate and cumulative strain maps for detecting responses related to fracture hits along the fiber-optic cable. We used low-frequency DAS (LF-DAS) results to estimate the fracture hit position and time, and in certain cases, to additionally estimate the fracture connection. By integrating LF-DAS results with DTS results, we detected the temperature changes around the compression response near the fracture hit position and time. Furthermore, we observed that timing of the fracture hit can be constrained more precisely by using high-frequency DAS data (greater than 10 Hz). We estimated the fracture propagation direction and speed from the estimated fracture hit position and time. The fracture propagation direction deviated slightly from a perpendicular line to the fiber direction. In addition, as estimated from the first fracture hit time, the fracture length and fluid injection volume had a proportional relationship. Due to challenges associated with the data, it is important to design data acquisition geometry and fracturing operations on the premise of acquiring LF-DAS data. It is also important to apply an additional noise reduction process to the data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3