Footstep detection in urban seismic data with a convolutional neural network

Author:

Jakkampudi Srikanth1,Shen Junzhu2,Li Weichen13,Dev Ayush1,Zhu Tieyuan2,Martin Eileen R.1

Affiliation:

1. Virginia Tech, Blacksburg, Virginia, USA..

2. Pennsylvania State University, State College, Pennsylvania, USA..

3. Northeastern University, Boston, Massachusetts, USA..

Abstract

Seismic data for studying the near surface have historically been extremely sparse in cities, limiting our ability to understand small-scale processes, locate small-scale geohazards, and develop earthquake hazard microzonation at the scale of buildings. In recent years, distributed acoustic sensing (DAS) technology has enabled the use of existing underground telecommunications fibers as dense seismic arrays, requiring little manual labor or energy to maintain. At the Fiber-Optic foR Environmental SEnsEing array under Pennsylvania State University, we detected weak slow-moving signals in pedestrian-only areas of campus. These signals were clear in the 1 to 5 Hz range. We verified that they were caused by footsteps. As part of a broader scheme to remove and obscure these footsteps in the data, we developed a convolutional neural network to detect them automatically. We created a data set of more than 4000 windows of data labeled with or without footsteps for this development process. We describe improvements to the data input and architecture, leading to approximately 84% accuracy on the test data. Performance of the network was better for individual walkers and worse when there were multiple walkers. We believe the privacy concerns of individual walkers are likely to be highest priority. Community buy-in will be required for these technologies to be deployed at a larger scale. Hence, we should continue to proactively develop the tools to ensure city residents are comfortable with all geophysical data that may be acquired.

Funder

Virginia Polytechnic Institute and State University

Institutes of Energy and the Environment, Pennsylvania State University

U.S. Department of Energy

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3