Modeling magnetostratigraphy in a borehole

Author:

Gallet Yves1,Courtillot Vincent1

Affiliation:

1. Laboratoire de Paleomagnetisme, Institut de Physique de Globe du Paris, 4 place Jussieu, F-75252 Paris Cedex 05, France

Abstract

The magnetic field along a hole bored through a sequence of dipping layers with varying magnetization and planar interfaces is calculated. The emphasis is on recovering remanent magnetization polarity transitions for magnetostratigraphic applications (dating, correlations), although intensity of remanent magnetization can in itself be a useful rock property. Results are presented for various cases of geologic interest in the form of axial vertical profiles and section maps of the holes at varying distances from polarity reversal interfaces. The vertical profiles demonstrate a resolving power of about six times the hole radius; meaningful magnetostratigraphies can be expected for rocks with a magnetization larger than [Formula: see text], for instruments with a sensitivity of 0.1 nT. In a number of natural occurrences, it may not be necessary to resort to progressive demagnetization to recover the polarity sequence. Depending on which magnetic field and magnetization component one looks at, the section maps display characteristic patterns, in which, for instance, the direction of magnetization and the dip of the layers interfere. These maps are discussed in some detail. They can be used as guidelines to build a multisensor vector magnetometer (downhole magnetostratigraphic tool), whose output should be coupled with measurement of magnetic susceptibility for reduction of induced magnetization and with output from a surface instrument in a differential operation mode to reduce transient magnetic variations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3