Seismic tomography at a fire‐flood site

Author:

Bregman N. D.1,Hurley P. A.2,West G. F.1

Affiliation:

1. Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ont., Canada M5S 1A7

2. Atomic Energy of Canada Ltd.

Abstract

A crosshole seismic experiment was conducted to locate and characterize a firefront at an enhanced oil recovery (EOR) pilot project. The reservoir engineers involved in the project were interested in finding out why the burnfront apparently had stalled between two wells 51 m apart. In a noisy producing environment, good quality seismic data were recorded at depths ranging from 710 to 770 m. The frequency range of the data, 500 to 1500 Hz, allows resolution of the velocity structure on a scale of several meters. The moveout of first arrivals indicates that there are large velocity variations in the study region; a high‐amplitude, late arriving channel wave points to the existence of a low‐velocity channel connecting the boreholes. Using an iterative, nonlinear scheme which incorporates curved ray tracing and least‐squares inversion in each iteration, the first‐arrival times were inverted to obtain a two‐dimensional model of the compressional seismic velocity between the boreholes. The velocities range from 1.5 km/s to 3.2 km/s, with a low‐velocity channel at the depth of the producing oil sand. Sonic, core, and temperature logs lead us to conclude that the extremely low velocities in the model are probably due to gases produced by the burn. Increased velocities in an adjacent shale may be a secondary effect of the burn. The velocity model also indicates an irregularity in the topography at the bottom of the reservoir, an irregularity which may be responsible for blocking the progress of the burnfront.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3