Aberration‐free image for SH reflection in transversely isotropic media

Author:

Blair J. M.1,Korringa J.2

Affiliation:

1. Chevron Oil Field Research Company, La Habra, CA

2. Chevron Oil Field Research Company, P.O. Box 446, La Habra, CA 90631

Abstract

This note is intended formulate and prove a theorem about shear (S) waves in a transversely isotropic medium for which we have found no reference in the literature. The theorem states the following: SH waves emanating from a point source in a homogeneous transversely isotropic medium are reflected from a planar interface between the transversely isotropic medium and another homogeneous medium in such a way that they define a reflective image that is free of aberrations, regardless of the relative orientation of the elastic symmetry axis and the interface. It is an image for rays in the direction of the group velocity vectors, not the slowness vectors. The image is located on a line through the source point in the direction of the group velocity of a wave for which the slowness vector is perpendicular to the interface. The distance, measured along this line, of the image behind the interface is equal to that of the source point in front. An analogous theorem for slowness vectors exists only for isotropic media, where it is trivial and coincides with the above.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Italian accelerometric archive: geological, geophysical and geotechnical investigations at strong-motion stations;Bulletin of Earthquake Engineering;2009-09-10

2. HR Reflection Surveys for Seismic Imaging of Unstable Slopes;Symposium on the Application of Geophysics to Engineering and Environmental Problems 2007;2007-01-01

3. Refraction across an angular unconformity between nonparallel TI media;GEOPHYSICS;2005-03

4. References;Seismic Reflection Processing;2004

5. PHYSICAL MODELING OF 3D SEISMIC WAVE PROPAGATION;Modeling the Earth for Oil Exploration;1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3