Clarifying the underlying and fundamental meaning of the approximate linear inversion of seismic data

Author:

Weglein Arthur B.1234,Zhang Haiyan1234,Ramírez Adriana C.1234,Liu Fang1234,Lira Jose Eduardo1234

Affiliation:

1. University of Houston, Houston, Texas, U.S.A. .

2. Formerly University of Houston, Houston, Texas, U.S.A.; presently ConocoPhillips, Houston, Texas, U.S.A. .

3. Formerly University of Houston, Houston, Texas, U.S.A.; presently WesternGeco, Houston, Texas, U.S.A. .

4. PETROBRAS Research and Development Center, Rio de Janeiro, Brazil. .

Abstract

Linear inversion is defined as the linear approximation of a direct-inverse solution. This definition leads to data requirements and specific direct-inverse algorithms, which differ with all current linear and nonlinear approaches, and is immediately relevant for target identification and inversion in an elastic earth. Common practice typically starts with a direct forward or modeling expression and seeks to solve a forward equation in an inverse sense. Attempting to solve a direct forward problem in an inverse sense is not the same as solving an inverse problem directly. Distinctions include differences in algorithms, in the need for a priori information, and in data requirements. The simplest and most accessible examples are the direct-inversion tasks, derived from the inverse scattering series (ISS), for the removal of free-surface and internal multiples. The ISS multiple-removal algorithms require no subsurface information, and they are independent of earth model type. A direct forward method solved in an inverse sense, for modeling and subtracting multiples, would require accurate knowledge of every detail of the subsurface the multiple has experienced. In addition, it requires a different modeling and subtraction algorithm for each different earth-model type. The ISS methods for direct removal of multiples are not a forward problem solved in an inverse sense. Similarly, the direct elastic inversion provided by the ISS is not a modeling formula for PP data solved in an inverse sense. Direct elastic inversion calls for [Formula: see text], [Formula: see text], [Formula: see text], … data, for direct linear and nonlinear estimates of changes in mechanical properties. In practice, a judicious combination of direct and indirect methods are called upon for effective field data application.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3