Kinematics of shot-geophone migration

Author:

Stolk Christiaan C.123,de Hoop Maarten V.123,Symes William W.123

Affiliation:

1. Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands. .

2. Purdue University, Center for Computational and Applied Mathematics and Geo-Mathematical Imaging Group, West Lafayette, Indiana, U.S.A. .

3. Rice University, Department of Computational and Applied Mathematics, The Rice Inversion Project, Houston, Texas, U.S.A. .

Abstract

Recent analysis and synthetic examples have shown that many prestack depth migration methods produce nonflat image gathers containing spurious events, even when provided with a kinematically correct migration velocity field, if this velocity field is highly refractive. This pathology occurs in all migration methods that produce partial images as independent migrations of data bins. Shot-geophone prestack depth migration is an exception to this pattern: each point in the prestack image volume depends explicitly on all traces within the migration aperture. Using a ray-theoretical analysis, we have found that shot-geophone migration produces focused (subsurface-offset domain) or flat (scattering-angle domain) image gathers, provided there is a curvilinear coordinate system defining pseudodepth with respect to which the rays carrying significant energy do not turn, and that the acquisition coverage is sufficient to determine all such rays. Although the analysis is theoretical and idealized, a synthetic example suggests that its implications remain valid for practical implementations, and that shot-geophone prestack depth migration could be a particularly appropriate tool for velocity analysis in a complex structure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3