A compressed implicit Jacobian scheme for 3D electromagnetic data inversion

Author:

Li Maokun1,Abubakar Aria1,Liu Jianguo1,Pan Guangdong1,Habashy Tarek M.1

Affiliation:

1. Schlumberger-Doll Research, Cambridge, Massachusetts, U.S.A..

Abstract

We developed a compressed implicit Jacobian scheme for the regularized Gauss-Newton inversion algorithm for reconstructing 3D conductivity distributions from electromagnetic data. In this algorithm, the Jacobian matrix, whose storage usually requires a large amount of memory, is decomposed in terms of electric fields excited by sources located and oriented identically to the physical sources and receivers. As a result, the memory usage for the Jacobian matrix reduces from O(NFNSNRNP) to O[NF(NS + NR)NP], where NF is the number of frequencies, NS is the number of sources, NR is the number of receivers, and NP is the number of conductivity cells to be inverted. When solving the Gauss-Newton linear system of equations using iterative solvers, the multiplication of the Jacobian matrix with a vector is converted to matrix-vector operations between the matrices of the electric fields and the vector. In order to mitigate the additional computational overhead of this scheme, these fields are further compressed using the adaptive cross approximation (ACA) method. The compressed implicit Jacobian scheme provides a good balance between memory usage and computational time and renders the Gauss-Newton algorithm more efficient. We demonstrated the benefits of this scheme using numerical examples including both synthetic and field data for both crosswell and controlled-source electromagnetic (CSEM) applications.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3