The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps

Author:

Pedersen L. B.1,Rasmussen T. M.1

Affiliation:

1. Department of Geophysics, Uppsala University, Box 556, S-751 22 Uppsala, Sweden

Abstract

The full gradient tensor is presently not measured routinely onboard airplanes or on land. This paper describes some improvements that can be made in strategies of data collection and in processing of potential field maps if such tensor measurements were available. We suggest that, in addition to producing for example standard total field anomaly maps, the invariants of the tensor be mapped. Strikes of magnetic or gravimetric structures may be determined from minimizing the power in the first row and column of the tensor. Invariants can be looked upon as nonlinear filters enhancing sources with big volumes. Their lateral resolution is superior to that of the field proper and, for a given resolution, the flight altitude and separation between flight lines can be increased compared with the standard mode of operation. In airborne surveys the distance between flight lines is normally much larger than the height above the ground. This may introduce severe aliasing effects in the direction perpendicular to the flight lines. By increasing the flight altitude, aliasing effects are reduced at the expense of lateral resolution which, however, may be improved by mapping the tensor invariants in addition to the magnetic field. The estimated gradient tensor from total field magnetic data over the Siljan impact region shows that the magnetic properties of the area are very nonuniform even from a height of 430 m above the topography. The nonlinear filters discriminate major anomalies into separate units.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 236 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3