Magnetic variations in the reconnaissance of sedimentary basins: Field procedure and generalized inversion of short‐period data from the Rio Grande rift

Author:

Hermance J. F.1,Neumann G. A.1

Affiliation:

1. Department of Geological Sciences, Brown University, Providence, RI 02912

Abstract

The magnetic variation (MV) technique employs magnetic transients from natural sources in the magnetosphere to delineate geologic structures in the earth’s interior based on their electrical properties. By measuring only the magnetic field at each site, and not the electric field as required for magnetotelluric (MT) studies, a site can be set up quickly, and often in places which might be quite unsuitable for MT measurements. This generally allows one to execute MV surveys in culturally developed areas or in rugged and logistically difficult terrain at much closer site spacings than those used for conventional MT surveys. Procedures for acquiring and processing MV field data are straightforward, as are methods for inverting data to obtain plausible geophysical models. Using a new 2-D generalized inverse algorithm which employs singular value damping of the Lanczos (or SVD) inverse, we apply the MV technique to determine the basement topography beneath a sequence of 11 remote referenced MV sites from an east‐west profile transecting one of the sedimentary basins of the Rio Grande rift—the San Antonio graben in the southern portion of the Socorro Basin in central New Mexico. Band‐limited data at 50 and 63 s were adequate to delineate the major features of the basin: its lateral margins, its asymmetrical cross‐section with basement dipping sharply to the west, and a large vertical displacement along the western boundary fault of the graben. Our results suggest, therefore, that reconnaissance surveys can be optimized to capture only those data needed to resolve such features. This strategy significantly affects the cost‐effectiveness of the method as a complement to other geophysical techniques.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3