Affiliation:
1. 107 Albion Street, Annandale, New South Wales 2038, Australia.
Abstract
Compressional (P) wave and shear (S) wave seismic reflection techniques were used to delineate the sand and gravel aquifer within a highly saline clay‐filled paleochannel in the Eastern Goldfields of Western Australia. The seismic refraction and gravity methods were also used to investigate the paleochannel. The unsaturated loose fine‐grained sand up to 10 m in depth at the surface is a major factor in degrading subsurface imaging. The seismic processing needed to be precise, with accurate static corrections and normal moveout corrections. Deconvolution enhanced the aquifer and other paleochannel reflectors. P‐wave reflection and refraction layer depths had good correlation and showed a total of six boundaries: (1) water table, (2) change in velocity (compaction) in the paleochannel sediments, (3) sand and gravel aquifer, (4) red‐brown saprolite and green saprolite boundary, (5) weathered bedrock, and (6) unweathered bedrock. P‐wave explosive and hammer sources were found to have similar signal characteristics, and the aquifer and bedrock were both imaged using the hammer source. The deep shots below the water table have the most broadband frequency response for reflections, but stacking clear reflections was difficult. The S‐wave reflection results showed high lateral and vertical resolution of the basal saprolite clay, the sand and gravel aquifer, and very shallow clays above the aquifer. The S‐wave reflection stacking velocities were 10–20% of the P‐waves, increasing the resolution of the S‐wave section. The gravity data were modelled to fit the known drilling and P‐wave seismic reflection depths. The refraction results did not identify the top of bedrock, so refraction depths were not used for the gravity modeling in this highly weathered environment. The final gravity model mapped the bedrock topography beyond the lateral extent of the seismic and drilling data.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Reference19 articles.
1. Beard, J. S., 1973, The elucidation of palaeodrainage patterns in Western Australia through vegetation mapping: Vegetation Survey of Western Australia Occasional Paper1.
2. Cohen, J. K., and Stockwell, Jr., J. W., 1994, CWP/SU: Seismic Unix release 29: A free package for seismic research and processing: Colorado School of Mines, Center for Wave Phenomena.
3. Cooper, M. J., 1994, Geophysical investigation of the Roe palaeo‐drainage system, Kalgoorlie W. A: Honours thesis: Curtin Univ. of Tech.
4. Dobecki, T. L., 1993, High resolution in saturated sediments—A case for shear wave reflection;inBell, R. S., and Lepper, C. M., Eds., Proc. the Symp. Application of Geophysics to Engineering and Environmental Problems: Environ. Eng. Geophys. Soc.1, 319–333.
5. The effect of deep weathering on geophysical exploration in Australia—A review
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献