3D joint inversion of geophysical data with Gramian constraints: A case study from the Carrapateena IOCG deposit, South Australia

Author:

Zhdanov Michael S.1,Gribenko Alexander V.1,Wilson Glenn A.2,Funk Charles3

Affiliation:

1. University of Utah and TechnoImaging

2. TechnoImaging

3. OZ Minerals

Abstract

Explorers are moving to increase the “discovery space” by exploring under cover and to greater depths, e.g., subsalt and sub-basalt exploration for oil and gas, and beneath transported cover for minerals. With this shift, there becomes an increased reliance on geophysical methods to delineate resources with no recognized geological or geochemical expressions. Different geophysical fields provide information about different physical properties of the Earth. Multiple geophysical surveys spanning gravity, magnetic, electromagnetic, and seismic methods are often interpreted to infer geology from models of different physical properties. In many cases, the various geophysical data are complementary, making it natural to consider a formal mathematical framework for their joint inversion to a shared Earth model. There are different approaches to joint inversion. The simplest case of joint inversion is where the physical properties are identical between different geophysical methods (e.g., Jupp and Vozoff, 1975). In other cases, joint inversion may infer theoretical, empirical, or statistical correlations between different physical properties (e.g., Hoversten et al., 2003, 2006). In cases where the physical properties are not correlated but, nevertheless, can be assumed to share a similar structure, joint inversions have been formulated as a minimization of the cross-gradients between different physical properties (e.g., Haber and Oldenburg, 1997; Gallardo and Meju, 2003, 2004). The latter has now been widely adopted by joint inversion practitioners as the de facto standard (e.g., Colombo and De Stefano, 2007; Hu et al., 2009; Jegen et al., 2009; De Stefano et al., 2011).

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3