GRAVITY AND MAGNETIC FIELDS OF POLYGONAL PRISMS AND APPLICATION TO MAGNETIC TERRAIN CORRECTIONS

Author:

Plouff Donald1

Affiliation:

1. U.S. Geological Survey, Menlo Park, California 94025

Abstract

Computer programs based on the exact calculations of the gravity and magnetic anomalies of polygonal prisms are faster in operation and more accurate than previous programs based on the numerical integration of polygonal laminas. The prism programs also are of more general application than existing computer programs that are based on the exact gravity and magnetic effects of rectangular prisms. There are no restrictions on the use of the exact formula for the gravitational attraction of a polygonal prism, but the formulas for the magnetic effect are restricted in that demagnetization is not considered, and a finite answer is not obtained in the unrealistic circumstance where an observation point coincides with an edge of the prism. Least‐squares methods permit calculation of the gravity or magnetic effect of models without knowledge of the density or magnetization contrasts, respectively, by comparison of the observed anomalies with theoretical dimensionless values to determine contrasts as regression coefficients. The coefficient of correlation provides a goodness of fit estimate that helps model evaluation. After calculating a magnetic terrain correction for an outcrop of Quaternary dacite and andestite near Clear Lake, Calif., an improvement of the coefficient of correlation from 88 to the 92 percent level indicates that this volcanic unit probably extends at least 150 m beneath the surface. Application of a magnetic terrain correction to disconnected outcrops of Tertiary andesite, eliminates most of a prominent v-shaped magnetic anomaly south of the San Juan Mountains, Colo.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3