Evaluation model of shale-adsorbed gas considering clay and water saturation

Author:

Liu Kun1ORCID,Lu Jing2ORCID,Hu Song2ORCID,Nan Zeyu2ORCID

Affiliation:

1. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing, China and Sinopec Petroleum Exploration and Production Research Institute, Beijing, China. (corresponding author)

2. Sinopec Petroleum Exploration and Production Research Institute, Beijing, China.

Abstract

Shale adsorption capacity is affected by many factors including temperature, pressure, geochemical characteristics of organic matter, clay, and water saturation. The traditional calculation model of adsorbed gas content only considers the influence of temperature, pressure, and organic geochemical characteristics. The influence of clay and water saturation on adsorption capacity is seldom considered. Isotherm adsorption experiments were conducted on synthetic specimens and natural specimens with varying clay types, clay contents, and water saturations. Then, the influences of clay and water saturation on the adsorption capacity were systematically studied. The experimental results found that the order of clay adsorption capacities was smectite > kaolinite > chlorite > illite. The multicomponent superposition rule was applicable in evaluating shale-adsorbed gas content. The total adsorption capacity was equal to the accumulation of the adsorption capacities of all types of clay and organic matter. Moisture will significantly reduce the adsorption capacity of shale. The adsorption capacities of synthetic specimens and natural specimens after being fully saturated with water were 9%–14% and 42%–61% of those in dry states, respectively. Then, a new shale-adsorbed gas evaluation model was established based on the Langmuir equation considering clay and water saturation. The calculation error of this new model was approximately 11%, which provides a new method for evaluating the adsorbed gas content of shale.

Funder

Sinopec

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3