Principle of prestack migration based on the full elastic two‐way wave equation

Author:

Wapenaar C. P. A.1,Kinneging N. A.1,Berkhout A. J.1

Affiliation:

1. Delft University of Technology, Postbus 5046, 2600 GA Delft, The Netherlands

Abstract

The acoustic approximation in seismic migration is not allowed when the effects of wave conversion cannot be neglected, as is often the case in data with large offsets. Hence, seismic migration should ideally be founded on the full elastic wave equation, which describes compressional as well as shear waves in solid media (such as rock layers, in which shear stresses may play an important role). In order to cope with conversions between those wave types, the full elastic wave equation should be expressed in terms of the particle velocity and the traction, because these field quantities are continuous across layer boundaries where the main interaction takes place. Therefore, the full elastic wave equation should be expressed as a matrix differential equation, in which a matrix operator acts on a full wave vector which contains both the particle velocity and the traction. The solution of this equation yields another matrix operator. This full elastic two‐way wave field extrapolation operator describes the relation between the total (two‐way) wave fields (in terms of the particle velocity and the traction) at two different depth levels. Therefore it can be used in prestack migration to perform recursive downward extrapolation of the surface data into the subsurface (at a “traction‐free” surface, the total wave field can be described in terms of the detected particle velocity and the source traction). Results from synthetic data for a simplified subsurface configuration show that a multiple‐free image of the subsurface can be obtained, from which the angle‐dependent P-P and P-SV reflection functions can be recovered independently. For more complicated subsurface configurations, full elastic migration is possible in principle, but it becomes computationally complex. Nevertheless, particularly for the 3-D case, our proposal has improved the feasibility of full elastic migration significantly compared with other proposed full elastic migration or inversion schemes, because our method is carried out per shot record and per frequency component.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3