Unique applications of MMR to track preferential groundwater flow paths in dams, mines, environmental sites, and leach fields

Author:

Kofoed Val O.1,Jessop Mike L.1,Wallace Michael J1,Qian Wei1

Affiliation:

1. Willowstick Technologies

Abstract

Groundwater systems have been notoriously difficult to map with high degrees of accuracy. As a result, not only have traditional geophysical methods proven inaccurate for groundwater characterization work, but they are often costly in terms of time, money, and environmental trauma. This paper describes a unique application of magnetometric resistivity or MMR (Edwards and Nabighian, 1991) for groundwater mapping and modeling, which is high-speed, accurate, minimally invasive, and cost effective. This method has now been deployed at many different sites all over the United States and in other countries like Canada, England, Peru, Sri Lanka, and Argentina. In 2007, the method was employed at 17 dams; some are large well-known structures in the United States. Through two case histories, this paper will assess the effectiveness of this methodology.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3