Elastic model low- to intermediate-wavenumber inversion using reflection traveltime and waveform of multicomponent seismic data

Author:

Xu Wencai1ORCID,Wang Tengfei1ORCID,Cheng Jiubing1ORCID

Affiliation:

1. State Key Laboratory of Marine Geology, Tongji University, Siping Road 1239, Shanghai 200092, China..

Abstract

Low-, intermediate-, and high-wavenumber components of P- and S-wave velocities jointly influence the elastic wave propagation and scattering in an isotropic medium. By taking advantage of all information in the data, elastic full-waveform inversion (E-FWI) has the potential to recover these model components. However, if the transmitted wave data are insufficient to illuminate the deeper part of the subsurface, we should rely on the solutions using reflection data. To reduce the nonlinearity of waveform inversion, we choose to decouple the effects of the model background and perturbation on the reflected waves within a linearized inversion framework. This resorts to three stages aiming to gradually fit the traveltimes and waveforms of the reflected PP and PS waves based on data or gradient preconditioning through P/S mode decomposition. For the first two stages, once the multicomponent seismograms have been separated into PP and PS reflection recordings, reflection traveltime inversion using an acoustic wave propagator (A-RTI) can successively recover the low-wavenumber components of P- and S-wave velocities. In the last stage, starting from the models having reliable low-wavenumber components, elastic reflection waveform inversion (E-RWI) can easily get out of the local minima and continue to retrieve the increasing wavenumber features sensitive to the waveform and amplitude variations. This is supported by gradient preconditioning through P/S mode decomposition of the extrapolated normal and adjoint wavefields, and alternately updating model background and high-wavenumber components in terms of linearized least-squares inversion. Numerical examples have demonstrated the performance of our E-RWI approach and the validity of the three-stage inversion workflow.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3