Isotropic elastic reverse time migration using the phase- and amplitude-corrected vector P- and S-wavefields

Author:

Yang Jidong1ORCID,Zhu Hejun1ORCID,Wang Wenlong2ORCID,Zhao Yang3ORCID,Zhang Houzhu3ORCID

Affiliation:

1. The University of Texas at Dallas, Department of Geosciences, Richardson, Texas, 75080 USA..

2. Harbin Institute of Technology, Department of Mathematics, Harbin 150001, China..

3. Aramco Service Company, Houston Research Center, Houston, Texas, 77084 USA..

Abstract

In elastic reverse time migration (RTM), wavefield separation is an important step to remove crosstalk artifacts and improve imaging quality. State-of-the-art techniques for wavefield separation in isotropic elastic media include using the Helmholtz decomposition and introducing an auxiliary wave equation. Although these two approaches produce pure-mode vector wavefields with correct amplitudes, phases, and physical units, their computational costs are still high under current computational capability, especially for 3D large-scale problems. Based on the P- and S-wave dispersion relations, we have developed an efficient wavefield separation strategy for elastic RTM. Instead of solving a vector Poisson’s equation in the Helmholtz decomposition, we modify the phases of source wavelet as well as multicomponent records and scale the amplitudes of extrapolated wavefields with the squares of P- and S-wave velocities. This operation allows us to produce vector P- and S-wavefields with the same phases and amplitudes as the input coupled wavefields while significantly reducing computational costs. With the separated vector wavefields, we implemented a modified dot-product imaging condition for elastic RTM. In comparison with the previously proposed dot-product imaging condition, this modified imaging condition enables us to eliminate the effects of multiplication with a cosine function and hence produces migrated images with accurate amplitudes. Several 2D and 3D numerical examples are used to demonstrate the feasibility and robustness of our method for imaging complex subsurface structures.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3