3D diffraction imaging method using low-rank matrix decomposition

Author:

Zhao Jingtao1ORCID,Yu Caixia2ORCID,Peng Suping1ORCID,Li Chuangjian1ORCID

Affiliation:

1. China University of Mining and Technology (Beijing), State Key Laboratory of Coal Resources and Safe Mining, Beijing, China..

2. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China and Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China..

Abstract

Seismic weak responses from subsurface small-scale geologic discontinuities or inhomogeneities are encoded in 3D diffractions. Separating weak diffractions from a strong reflection background is a difficult problem for diffraction imaging, especially for the 3D case when they are tangent to or interfering with each other. Most conventional diffraction separation methods ignore the azimuth discrepancy between reflections and diffractions when suppressing reflections. In fact, the reflections associated with a specific pair of azimuth-dip angle possess sparse characteristics, and the diffractions adhering to Huygens’ principle behave as low-rank components. Therefore, we have developed a 3D low-rank diffraction imaging method that uses the Mahalanobis-based low-rank and sparse matrix decomposition method for separating and imaging 3D diffractions in the azimuth-dip angle image matrix. The advantages of our 3D diffraction imaging method not only includes the handling of interfering events but also includes ensuring a better protection of weak diffractions. The numerical experiment illustrates the good performance of our method in imaging small-scale discontinuities and inhomogeneities. The field data application of carbonate reservoirs further confirms its potential value in resolving the masked small-scale cavities that can provide storage spaces and a migration pathway for petroleum.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3