Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion

Author:

de Figueiredo Leandro Passos1ORCID,Grana Dario2ORCID,Roisenberg Mauro3,Rodrigues Bruno B.4

Affiliation:

1. Federal University of Santa Catarina, Informatic and Statistics Department, Florianópolis, Brazil and LTrace Geophysical Solutions, Florianópolis, Brazil..

2. University of Wyoming, Department of Geology and Geophysics, Laramie, Wyoming, USA..

3. Federal University of Santa Catarina, Informatic and Statistics Department, Florianópolis, Brazil..

4. Petrobras Research Center, Rio de Janeiro, Brazil..

Abstract

One of the main objectives in the reservoir characterization is estimating the rock properties based on seismic measurements. We have developed a stochastic sampling method for the joint prediction of facies and petrophysical properties, assuming a nonparametric mixture prior distribution and a nonlinear forward model. The proposed methodology is based on a Markov chain Monte Carlo (MCMC) method specifically designed for multimodal distributions for nonlinear problems. The vector of model parameters includes the facies sequence along the seismic trace as well as the continuous petrophysical properties, such as porosity, mineral fractions, and fluid saturations. At each location, the distribution of petrophysical properties is assumed to be multimodal and nonparametric with as many modes as the number of facies; therefore, along the seismic trace, the distribution is multimodal with the number of modes being equal to the number of facies power the number of samples. Because of the nonlinear forward model, the large number of modes and as a consequence the large dimension of the model space, the analytical computation of the full posterior distribution is not feasible. We then numerically evaluate the posterior distribution by using an MCMC method in which we iteratively sample the facies, by moving from one mode to another, and the petrophysical properties, by sampling within the same mode. The method is extended to multiple seismic traces by applying a first-order Markov chain that accounts for the lateral continuity of the model properties. We first validate the method using a synthetic 2D reservoir model and then we apply the method to a real data set acquired in a carbonate field.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3