Signal-to-noise ratio enhancement for 3C downhole microseismic data based on the 3D shearlet transform and improved back-propagation neural networks

Author:

Dong Xintong1ORCID,Jiang Hong1,Zheng Sheng1,Li Yue1ORCID,Yang Baojun2

Affiliation:

1. Jilin University, Department of Communication Engineering, Changchun, China.(corresponding author); .

2. Jilin University, Department of Geo-Exploration Science and Technology, Changchun, China..

Abstract

As the seismic responses of unconventional hydraulic fracturing, downhole microseismic signals play an essential role in the exploitation of unconventional oil and gas reservoirs. In geologic structure interpretation and reservoir development, high-quality downhole microseismic data are necessary. However, the characteristics of downhole microseismic signals, such as weak energy and high frequency, bring great difficulty to signal-to-noise ratio enhancement. How to suppress the random noises in 3C downhole microseismic signals becomes problematic. To solve this problem, the 3D shearlet transform is introduced into downhole microseismic data processing. Different from the 2D shearlet transform, the correlation among the 3C of downhole microseismic signals is fully considered in the 3D shearlet transform, which enables the 3D shearlet transform to suppress random noise more effectively. In addition, for accurate selection of 3D shearlet coefficient, the back-propagation (BP) neural network is applied to the selection of coefficients. Unlike conventional threshold functions, BP neural networks can achieve optimal results by repeated training. At the same time, a new weight factor is proposed to improve the misconvergence of BP neural networks. Experimentally our method has been used to process synthetic and real 3C downhole microseismic signals, with results indicating that, compared with conventional methods, our new algorithm exhibits better performance in valid signal preservation and random noise suppression.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3