A new method for interpolating linear features in aeromagnetic data

Author:

Naprstek Tomas1ORCID,Smith Richard S.2ORCID

Affiliation:

1. Laurentian University, Harquail School of Earth Sciences, Sudbury, Ontario, Canada and National Research Council of Canada, Ottawa, Ontario, Canada.and .

2. Laurentian University, Harquail School of Earth Sciences, Sudbury, Ontario, Canada..

Abstract

When aeromagnetic data are interpolated to make a gridded image, thin linear features can result in “boudinage” or “string of beads” artifacts if the anomalies are at acute angles to the traverse lines. These artifacts are due to the undersampling of these types of features across the flight lines, making it difficult for most interpolation methods to effectively maintain the linear nature of the features without user guidance. The magnetic responses of dikes and dike swarms are typical examples of the type of geologic feature that can cause these artifacts; thus, these features are often difficult to interpret. Many interpretation methods use various enhancements of the gridded data, such as horizontal or vertical derivatives, and these artifacts are often exacerbated by the processing. Therefore, interpolation methods that are free of these artifacts are necessary for advanced interpretation and analysis of thin, linear features. We have developed a new interpolation method that iteratively enhances linear trends across flight lines, ensuring that linear features are evident on the interpolated grid. Using a Taylor derivative expansion and structure tensors allows the method to continually analyze and interpolate data along anisotropic trends, while honoring the original flight line data. We applied this method to synthetic data and field data, which both show improvement over standard bidirectional gridding, minimum curvature, and kriging methods for interpolating thin, linear features at acute angles to the flight lines. These improved results are also apparent in the vertical derivative enhancement of field data. The source code for this method has been made publicly available.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3