Model parameterization and amplitude variation with angle and azimuthal inversion in orthotropic media

Author:

Zong Zhaoyun1ORCID,Ji Lixiang1

Affiliation:

1. China University of Petroleum, Qingdao 266555, China and Qingdao National Laboratory for Marine Science and Technology, Laboratory for Marine Mineral Resources, Qingdao 266555, China.(corresponding author); .

Abstract

Horizontal layered formations with a suite of vertical or near-vertical fractures are usually assumed to be an approximate orthotropic medium and are more suitable for estimating fracture properties with wide-azimuth prestack seismic data in shale reservoirs. However, the small contribution of anisotropic parameters to the reflection coefficients highly reduces the stability of anisotropic parameter estimation by using seismic inversion approaches. Therefore, a novel model parameterization approach for the reflectivity and a pragmatic inversion method are proposed to enhance the stability of the inversion for orthotropic media. Previous attempts to characterize orthotropic media properties required using four or five independent parameters. However, we have derived a novel formulation that reduces the number of parameters to three. The inversion process is better conditioned with fewer degrees of freedom. An accuracy comparison of our formula with the previous ones indicates that our approach is sufficiently precise for reasonable parameter estimation. Furthermore, a Bayesian inversion method is developed that uses the amplitude variation with angle and azimuth (AVAZ) of the seismic data. Smooth background constraints reduce the similarity between the inversion result and the initial model, thereby reducing the sensitivity of the initial model to the inversion result. Cauchy and Gaussian probability distributions are used as prior constraints on the model parameters and the likelihood function, respectively. These ensure that the results are within the range of plausibility. Synthetic examples demonstrate that the adopted orthotropic AVAZ inversion method is feasible for estimating the anisotropic parameters even with moderate noise. The field data example illustrates the inversion robustness and stability of the adopted method in a fractured reservoir with a single well control.

Funder

National Nature Science Foundation of China

Science Foundation for Innovation and Technology Support Program for Young Scientists in Colleges of Shandong province

Ministry of Science and Technology of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3