On the rock-physics basis for seismic hydrocarbon detection

Author:

Jiang Lian1ORCID,Castagna John P.1ORCID

Affiliation:

1. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas 77004, USA.(corresponding author).

Abstract

One of the primary fluid indicators for direct hydrocarbon detection in sandstones using seismic reflectivity is the difference between the saturated-rock P-wave impedance and the rock-frame impedance. This can be expressed in terms of the difference between the observed P-wave impedance squared and a multiplier times the square of the observed S-wave impedance. This multiplier is a fluid discrimination parameter that laboratory and log measurements suggest varies over a wide range. Theoretically, this parameter is related to the ratio of the frame bulk and shear moduli and the ratio of the frame and fluid-saturated rock densities. In practice, empirical determination of the fluid discrimination parameter may be required for a given locality. Given sufficient data for calibration, the parameter can be adjusted so as to best distinguish hydrocarbon-saturated targets from brine-saturated rocks. Using an empirically optimized fluid discrimination parameter has a greater impact on hydrocarbon detection success rate in the oil cases studied than for gas reservoirs, for which there is more latitude. Application to a wide variety of well-log and laboratory measurements suggests that the empirically optimized parameter may differ from direct theoretical calculations made using Gassmann’s equations. Combining laboratory and log measurements for sandstones having a broad range of frame moduli, varying from poorly consolidated to highly lithified, reveals a simple linear empirical relationship between the optimized fluid discrimination parameter and the squared velocity ratio of brine-saturated sandstones.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3