Affiliation:
1. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas 77004, USA.(corresponding author).
Abstract
One of the primary fluid indicators for direct hydrocarbon detection in sandstones using seismic reflectivity is the difference between the saturated-rock P-wave impedance and the rock-frame impedance. This can be expressed in terms of the difference between the observed P-wave impedance squared and a multiplier times the square of the observed S-wave impedance. This multiplier is a fluid discrimination parameter that laboratory and log measurements suggest varies over a wide range. Theoretically, this parameter is related to the ratio of the frame bulk and shear moduli and the ratio of the frame and fluid-saturated rock densities. In practice, empirical determination of the fluid discrimination parameter may be required for a given locality. Given sufficient data for calibration, the parameter can be adjusted so as to best distinguish hydrocarbon-saturated targets from brine-saturated rocks. Using an empirically optimized fluid discrimination parameter has a greater impact on hydrocarbon detection success rate in the oil cases studied than for gas reservoirs, for which there is more latitude. Application to a wide variety of well-log and laboratory measurements suggests that the empirically optimized parameter may differ from direct theoretical calculations made using Gassmann’s equations. Combining laboratory and log measurements for sandstones having a broad range of frame moduli, varying from poorly consolidated to highly lithified, reveals a simple linear empirical relationship between the optimized fluid discrimination parameter and the squared velocity ratio of brine-saturated sandstones.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献